(Hyper) Converged Infrastructure

In a traditional infrastructure deployment, compute, storage and networking are deployed and managed independently, often based on components from multiple vendors. In a converged infrastructure, the compute, storage, and network components are designed, assembled, and delivered by one vendor and managed as one system, typically deployed in one or more racks. A converged infrastructure minimizes compatibility issues between servers, storage systems and network devices while also reducing costs for cabling, cooling, power and floor space.

The technology is usually difficult to expand on-demand, requiring the deployment of another rack of infrastructure to add new resources. The following picture shows an example of a converged system.

2016-09/converged-system.jpg


While in a converged infrastructure the infrastructure is deployed as individual components in a rack, a hyperconverged infrastructure (HCI) brings together the same components within a single server node.

A hyperconverged infrastructure comprises a large number of identical physical servers from one vendor with direct attached storage in the server and special software that manages all servers, storage, and networks as one cluster running virtual machines.

The technology is easy to expand on-demand, by adding servers to the hyperconverged cluster. The following picture shows an example of a hyperconverged system.

2016-09/hyperconverged-system.jpg

Hyperconverged systems are an ideal candidate for deploying VDI environments (see section 12.3.3), because the storage is close to the compute (as it is in the same box) and the solution scales well with the rise of the number of users.

A big advantage of converged and hyperconverged infrastructures is having to deal with one firmware and software vendor. Vendors of hyperconverged infrastructures provide all updates for compute, storage and networking in one service pack and deploying these patches is typically much easier than deploying upgrades in all individual components in a traditional infrastructure deployment.

Drawbacks of converged and hyperconverged infrastructures are:

  • Vendor lock-in – the solution is only beneficial if all infrastructure is from the same vendor
  • Scaling can only be done in fixed building blocks – if more storage is needed, compute must also be purchased. This can have a side effect: since some software licenses are based on the number of used CPUs or CPU cores, adding storage also means adding CPUs and hence leads to extra license costs.

This entry was posted on Friday 21 October 2016

Earlier articles

Infrastructure as code

My Book

DevOps for infrastructure

Infrastructure as a Service (IaaS)

(Hyper) Converged Infrastructure

Object storage

Software Defined Networking (SDN) and Network Function Virtualization (NFV)

Software Defined Storage (SDS)

What's the point of using Docker containers?

Identity and Access Management

Using user profiles to determine infrastructure load

Public wireless networks

Supercomputer architecture

Desktop virtualization

Stakeholder management

x86 platform architecture

Midrange systems architecture

Mainframe Architecture

Software Defined Data Center - SDDC

The Virtualization Model

What are concurrent users?

Performance and availability monitoring in levels

UX/UI has no business rules

Technical debt: a time related issue

Solution shaping workshops

Architecture life cycle

Project managers and architects

Using ArchiMate for describing infrastructures

Kruchten’s 4+1 views for solution architecture

The SEI stack of solution architecture frameworks

TOGAF and infrastructure architecture

The Zachman framework

An introduction to architecture frameworks

How to handle a Distributed Denial of Service (DDoS) attack

Architecture Principles

Views and viewpoints explained

Stakeholders and their concerns

Skills of a solution architect architect

Solution architects versus enterprise architects

Definition of IT Architecture

What is Big Data?

How to make your IT "Greener"

What is Cloud computing and IaaS?

Purchasing of IT infrastructure technologies and services

IDS/IPS systems

IP Protocol (IPv4) classes and subnets

Infrastructure Architecture - Course materials

Introduction to Bring Your Own Device (BYOD)

IT Infrastructure Architecture model

Fire prevention in the datacenter

Where to build your datacenter

Availability - Fall-back, hot site, warm site

Reliabilty of infrastructure components

Human factors in availability of systems

Business Continuity Management (BCM) and Disaster Recovery Plan (DRP)

Performance - Design for use

Performance concepts - Load balancing

Performance concepts - Scaling

Performance concept - Caching

Perceived performance

Ethical hacking

Computer crime

Introduction to Cryptography

Introduction to Risk management

The history of UNIX and Linux

The history of Microsoft Windows

The history of Novell NetWare

The history of operating systems - MS-DOS

The history of Storage

The history of Networking

The first computers

History of servers

Tips for getting your ITAC certificate

Studying TOGAF

Is your data safe in the cloud?

Proof of concept

Who needs a consistent backup?

Measuring Enterprise Architecture Maturity

Human factors in security

Master Certified IT Architect

ITAC certification

Open group ITAC /Open CA Certification

Human factors in security

Google outage

SAS 70

TOGAF 9 - What's new?

DYA: Development without architecture

Spam is big business

Why IT projects fail

Power and cooling

Let system administrators participate in projects

The 7 Habits of Highly Effective People

Archimate

A meeting with John Zachman

ITAC - IT Architect certification

Personal Information is Personal Property

The Irresistible Forces Meet the Movable Objects

Hardeningscheck and hack testing for new servers

Knowledge management

Information Lifecycle Management - What is ILM

LEAP: The Redmond trip

LEAP: The last Dutch masterclasses

What do system administrators do?

Is software ever finished?

SCADA systems

LEAP - Halfway through the Dutch masterclasses

Securing data: The Castle versus the Tank

Non-functional requirements

LEAP - Microsoft Lead Enterprise Architect Program

Reasons for making backups

Log analysis - Use your logging information

Archivering data - more than backup

Patterns in IT architecture

Layers in IT security

High performance clusters and grids

Zachman architecture model

High Availability clusters

Monitoring by system administrators

What is VMS?

IT Architecture certifications

Storage Area Networks (SAN)

Documentation for system administrators

Rootkits

Presentations: PowerPoint sheets are not enough

99,999% availability

Linux certification: RHCE and LPI

IT Infrastructure model

Sjaak Laan


Recommended links

Ruth Malan
Gaudi site
Esther Barthel's site on virtualization
Eltjo Poort's site on architecture


Feeds

 
XML: RSS Feed 
XML: Atom Feed 


Disclaimer

The postings on this site are my opinions and do not necessarily represent CGI’s strategies, views or opinions.

 

Copyright Sjaak Laan